
Constificator User Manual

Institute for Software IFS
https://www.cevelop.com

https://ifs.hsr.ch

https://www.cevelop.com
https://ifs.hsr.ch

This manual provides an introduction to Constificator, a plug-in for the Cevelop IDE that aims
to help programmers write const-correct code. The plug-in has first been released in version 1.5
of Cevelop and has since undergone a lot of changes, both in the user interface as well as the
analysis subsystem. This document focuses on the version of the plug-in that is shipped with
Cevelop 1.6.

https://www.cevelop.com

Contents

1 Introduction 1
1.1 Benefits of using Constificator . 1
1.2 Enabling Constificator . 2
1.3 Constificator Marker Types . 4

2 Usage 5
2.1 Applying Simple Fixes . 5
2.2 Applying Fixes Across Multiple Files . 6

3 Revision History 9

i

Any keybindings described and used throughout this document are the default keybindings
for a fresh installation of the Cevelop IDE. They might be subject to change between releases
and can be configured in the workspace-wide preferences.

Note: Keybindings

1 Introduction

The main purpose of Constificator is to help you write const-correct code starting from the
first line of your project. Of course, Constificator also supports you retroactively when review-
ing or extending an existing codebase. Since it makes use of the existing problem reporting
infrastructure of Cevelop, it integrates nicely into the existing workflow by providing standard
problem markers and QuickFixes as you type.

In the following sections we take a look at how to activate and configure Constificator. We
also show some examples to demonstrate some of the situations in which the plug-in will help
you write better code as you type.

1.1 Benefits of using Constificator

You might be wondering why you should care about const-correctness. In this section, we give a
short overview of the benefits you get from consequently using Constificator and try to convince
you to make your code as const as possible.

First and foremost, writing const-correct code helps you to make your intent clear. Since in
C++ we often care about efficency, we also often use pass-by-reference to eliminate unnecessary
copies. Unfortunately, variables in C++ are – as the name implies – variable by default. To see
why this is an issue, consider the following code:

#include <string>

void print(std::string & data) {
// ... implementation goes here

}

int main() {
std::string data{"I don't want this to be modified"};
print(data);

}

Listing 1.1: It is not clear whether or not print modifies its argument.

Admittedly, the code in Listing 1.1 is somewhat contrived, but imagine the definition of print
is located in a different translation unit. From the signature alone, we can not be sure whether
the function modifies the string we provide it with. Of course the behavior could be documented
in some form of API documentation, but why not let the compiler enforce the immutability on

1

1 Introduction

our behalf? Listing 1.2 shows an improved version of the function definition. With this signature,
we enable the compiler to make sure that the function does not modify its argument.

Of course, the implementation could always const_cast<> away the constness of its
argument, but if it were to modify the values afterwards, the function itself would exhibit
undefined-behavior.

Note: const_cast<...>

#include <string>

void print(std::string const & data) {
// ... implementation goes here

}

int main() {
std::string const data{"I don't want this to be modified"};
print(data);

}

Listing 1.2: Adding const makes the intent clear.

It is worth noting, that changing print’s signature also enabled us to add const to the
declaration of data, thus preventing it to be changed accidentally. This is only one of the areas,
where Constificator can help you by interactively providing suggestions on how to improve your
code.

Having function signatures clearly express if the arguments will be modified or not, allows you
and other programmers that use your code to reason about what a given code segment can
and can not do. In multithreaded code for instance, we can have any number of concurrent
consumers of the same piece of data, as long as none of them modifies it. By consequently
applying const, we can decide if a function is safe to use on a high level, while having the
compiler enforce the immutability for us.

Besides additional type-safety, applying const where possible can, under some circumstances,
have a profound impact on how much code the compiler generates. For an example of such an
optimization arising from a single const, see Jason Turner’s talk Rich Code for Tiny Computers
which he gave at CppCon 2016.

If you want to learn more about const-correctness, we recomend you take a look at isocpp’s
FAQ entry on this very topic.

1.2 Enabling Constificator

Since its inclusion in version 1.5 of the Cevelop IDE, Constificator has been disabled by default.
One reason for this is that, especially in large projects, the plug-in often places a large number
of markers. Another reason is that running a complete C++ Code Analysis on an existing, large
project will take a cosinderable amount of time.

2

https://channel9.msdn.com/events/CPP/CppCon-2016/CppCon-2016-Jason-Turner-Rich-Code-for-Tiny-Computers-A-Simple-Commodore-64-Game-in-C17
https://isocpp.org/wiki/faq/const-correctness#overview-const

1.2 Enabling Constificator

Since Constificator integrates natively with the Cevelop IDE, enabling it is extremely easy.
First you will want to make sure you are using at least version 1.6 of the Cevelop IDE. Open
the preferences via Window Preferences and navigate to the Code Analysis settings in the group
C/C++.

Figure 1: The Code Analysis preferences

Figure 1 shows the preferences di-
alog for the Code Analysis prefer-
ences. To enable all checks sup-
ported by Constificator, check the
row Constificator problems. You also
have the option to only enable the
high-confidence checks, by selecting
only Missing const-qualification, or
the low-confidence checks by only
activating the checkbox for Possibly
missing const-qualification. After you
have chosen which checks to activate,
you can save these setting by clicking
the OK button. We will see the differ-
ence of the two checks in section 1.3
on the next page.

Like most preferences, you can also set the Code Analysis settings on a per project basis.
To enable Constificator only for a specific project, open the Project Properties by either
right-clicking the project and selecting Properties , or using Alt + on Windows and
Linux or similiarly + on macOS. Afterwards the process is identical to changing the
workspace-wide settings.

Note: Per project preferences

Figure 2: Customizing the Constificator checks

In addition to these coarse-grained set-
tings, you can also customize each
of the checks by selecting one of the
two check categories and clicking the
Customize Selected... button. In the
newly opened window, you can define
which specific checks you want Con-
stificator to perform. The default is
for all checks to be activated. You can
also change the severity of the mark-
ers the plug-in will place. As with
other Code Analysis plug-ins, you can
also define on which resources the
checks should be performed (via the
Scopes tab) as well as when the plug-
in’s analysis should be executed.

3

1 Introduction

1.3 Constificator Marker Types

In Figure 1 on the preceding page we saw that the plug-in features two top-level marker types,
the Missing const-qualification marker and the Possibly missing const-qualification marker. The
difference between the two is the confidence with which Constificator has determined that the
const keyword could be inserted.

Since C++ is a fairly complex language, it is often difficult to decide whether or not a declaration
can receive const-qualification. The plug-in works hard to try and make sure that no markers
are placed where inserting the const keyword would produce ill-formed code. The plug-in also
tries hard to avoid high-level semantic changes to the program being analyzed.

1.3.1 Missing const-qualification

Most of the time, adding const-qualification does not change the semantics of the program
being analyzed. For example, if a variable is never used in a context that modifies its value,
const-qualification can be added without changing any of the high-level behavior. In these cases,
Constificator will put a Missing const-qualification marker at the position where the const
keyword can be inserted.

1.3.2 Possibly missing const-qualification

Consider the following code, imagining the definition of Base being in a separate header file:

struct Base { virtual void do_stuff() {} };

struct Derived : Base {
void do_stuff() {

return;
}

};

Listing 1.3: Adding const would change overriding to hiding.

Technically speaking, there is nothing that would prevent us from adding const to the definition
of Derived::do_stuff(). The implementation does not touch any non-static data mem-
bers of Derived or Base and also does not call any non-const non-static member functions of
Derived or Base. However, applying const to the definition of Derived::do_stuff()
would change the semantics of the code, since all of a sudden, Derived::do_stuff() would
hide Base::do_stuff() and not override it. Since Constificator can not decide whether
or not to apply const in this situation, it places a Possibly missing const-qualification marker
on Derived::do_stuff().

4

2 Usage

In this chapter, we take a look at how to work with Constificator. To keep the code examples
small, we use somewhat contrived examples. We would also like to point out that there is an
example project available at https://github.com/IFS-HSR/constificator-demo.

This section assumes that Constificator is activated, either for the whole workspace or the
project you are working on. If you haven’t done so already, please activate the plug-in. For
information on how to do that, and how to configure Constificator to suite your needs,
please see section 1.2 on page 2.

Note: Constificator must be activated

2.1 Applying Simple Fixes

Let’s start with a simple example of how to apply code fixes (so-called QuickFixes) to your code
using Constificator. Starting from the code seen in Listing 1.1 on page 1, you will notice that
the plug-in places a problem marker on line 3 (see Figure 3 below).

Figure 3: Marked function parameter

Note the green and white C left of the line numbers as well as the green squiggly line under
the type of print’s parameter. What Constificator is telling us here is that it detected that
the std::string stored at the location referenced by data is not changed in the scope of
print. You could of course go in and add the const yourself, but where is the fun in that?
Instead, try placing your cursor on the line 3 and pressing Ctrl + 1 on Windows and Linux or
similiarly + 1 on macOS. This will open a drop-down right next to the marked section.
In this drop-down, click on Add const-qualification. The plug-in will insert the missing const
keyword for you.

After a couple of seconds, you will notice that Constificator has placed a new marker on line
8, since it determined that the variable data is never used in a modifying context. Adding the
const keyword here, is just as easy as above. If you ever apply a QuickFix when you did not

5

https://github.com/IFS-HSR/constificator-demo

2 Usage

mean to, just use Ctrl + z on Windows and Linux or similiarly + z on macOS to undo
the change.

2.2 Applying Fixes Across Multiple Files

Besides handling fixes inside a single file, Constificator also supports adding constness across
file boundaries. This functionality comes in handy when you want to apply a QuickFix to a
function parameter and the function has one or more forward declarations in different files. The
canonical example for this situation are classes or structs that are often declared in a header
file, and defined in a separate implementation file.

struct Structure {
void doit();

private:
int member{};

};

Listing 2.1: Structure.h - A simple C++ struct

If you input the code in Listing 2.1 as a new file called Structure.h into the Cevelop IDE, you will
notice that Constificator will not highlight the declaration of Structure::doit(). This
is because of two reasons. First, the plug-in has not seen the definition for the function yet.
Therefore it would be impossible to decide whether or not the function does something that
would prevent it from receiving const-qualification. Secondly, the plug-in will currently only
highlight definitions. This is because the definition is the origin of the ”problem” and thus the
fix should be applied from there.

#include "Structure.h"

void Structure::doit() {
// Do nothing

}

Listing 2.2: Structure.cpp: The Implementation of Structure::doit

Now add the code in Listing 2.2 in a file called Structure.cpp. You will notice that Constificator
will mark Structure::doit as eligible to receive const-qualification. This makes sense since
Structure::doit neither modifies any non-const non-static data members of Structure
nor calls any non-const non-static member functions. If you go ahead and apply the suggested
fix like described in section 2.1 on the preceding page you will notice that Constificator now
presents you with the dialog seen in Figure 4 on the next page.

6

2.2 Applying Fixes Across Multiple Files

Figure 4: Entry dialog for multiple changes

Every time a QuickFix modifies multiple locations in your project, even when all locations are
in the same file, the plug-in presents you with a dialog like this one. Clicking on the Next >

button will take you the next dialog as seen in Figure 5.

Figure 5: Overview of the changes to be applied

In addition to showing you a preview of the changes that will be applied, this dialog allows you
to select which of them to actually apply. When you click on the Finish button, only the changes
that are checked will be applied. You can cancel the process during each step using the Cancel

button.

7

3 Revision History

Revision Date Author(s) Description

1.0 16.01.2017 FM Initial documentation

9

	Introduction
	Benefits of using Constificator
	Enabling Constificator
	Constificator Marker Types

	Usage
	Applying Simple Fixes
	Applying Fixes Across Multiple Files

	Revision History

